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Abstract—In this paper we develop a framework for integrat-
ing real-time software modules that comprise a reconfigurable
multi-sensor based system. Our framework is based on the pro-
posed concept of a global database of state information through
which real-time software modules exchange information. This
methodology allows the development and integration of reusable
software in a complex multiprocessing environment. A reconfig-
urable sensor-based control system consists of many software
modules, each of which can be modelled using a simplified version
of a port automaton. Our new state variable table mechanism can
be used in both statically and dynamically reconfigurable systems,
and it is completely processor independent. Individual modules
may also be combined into larger modules to aid in building large
systems, and to reduce bus and CPU utilization. An efficient im-
plementation of the state variable table mechanism, which has
been integrated into the ChimeraIl Real-Time Operating Sys-
tem, is also described.

Keywords—reconfigurable sensor-based control systems, reus-
able software, real-time operating systems, interprocessor com-
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I. INTRODUCTION

Real-time sensor based control systems are complex. In order to
develop such systems, control strategies are needed to interpret and
process sensing information for generating control signals. There has
been considerable effort devoted to addressing this aspect of real-time
control systems. However, even with robust control algorithms, a so-
phisticated software environment is necessary for efficient implemen-
tation into a robust system. The level of sophistication is even greater
if this system is to be generalized so that it is reconfigurable and can
perform more than a single task or application. Obviously, a real-time
operating system (RTOS) is part of this software environment. How-
ever, it is also necessary to have a layer of abstraction between the
RTOS and control algorithms that makes the implementation efficient,
allows for easily expanding and/or changing the control strategies,
and reduces development costs by incorporating the concept of reus-
able software. The development of this layer of abstraction is further
motivated by the realization that real-time control systems are typical-
ly implemented in open-architecture multiprocessor environments.
Several issues, such as configuring reusable modules to perform a job,
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allocating modules to processors, communicating between various
modules, synchronizing modules running on separate processors, and
determining correctness of a configuration, arise in this context.

In this paper we develop a framework for integrating real-time soft-
ware modules that comprise a reconfigurable multi-sensor based sys-
tem. Qur framework is based on the proposed concept of a global da-
tabase of state information through which real-time software modules
exchange information. This methodology allows the development and
integration of reusable software in a complex multiprocessing envi-
ronment.

We define a control module as a reusable software module within a
real-time sensor-based control subsystem. A reconfigurable system
consists of many control modules, each of which can be modelled us-
ing a simplified version of a port automaton [22], as shown in Fig. 1.
Each module has zero or more input ports, and zero or more oulput
ports. Bach port corresponds to a data item required or generated by
the control module. A module which obtains data from sensors may
not have any input ports, while a module which sends new data to ac-
tuators may not have any output ports. We assume that each control
module is a separate task!. A control module can also interface with
other subsystems, such as vision systems, path-planners, or expert
systems.

A link between two modules is created by connecting an output
port of one module to an appropriate input of another module. A legal
configuration is obtained if for every input port in the system, there is
one, and only one, output port connected to it. An extension of the port
automata theory is presented in [12], where a split connector allows a
single output to be fanned into multiple output ports, and a join con-
nector allows multiple input ports to be merged into a single input
port. The split connector replicates the output multiple times. For the
join connector, a combining algorithm, such as a weighted average, is
required to merge the data,

input ports X1 :
xn

control
module

Y4
o output ports
Ym

communication with
sensors, actuators,
and other subsystems

Fig. 1: Port automaton model of a control module

1-We define a fask as a separate thread of control within a multitasking operating sys-
tem. The definition is consistent with that of the Chimera Il Real-Time Operating System
[23], and is also known as a thread in Mach and POSIX, and a lightweight processin some
other operating systems.



Other environments developed for robot control ([1][2][3][5]1{14])
lack the flexibility required for the design and implementation of
reconfigurable systems. The design of these programming environ-
ments is generally based on heuristics rather than on software archi-
tecture models, and lends itself only to single-configuration systems.
The environments also do not make clear distinctions between module
interfaces and module content, thus lacking a concrete framework
which would allow development of modules independent of the target
application and target hardware.

In this paper, we propose a method of using state variables for sys-
tematically integrating reusable control modules in a real-time multi-
processor environment. Our design can be used with both statically
and dynamically reconfigurable systems. Section II describes the de-
sign issues to be considered, and some of the assumptions we have
made about the target environment. Section Il gives the architectural
details of our control module integration. Section IV describes an ef-
ficient implementation of the state variable table mechanism, which
has been integrated into the Chimera II Real-Time Operating System
[23]. Finally, Section V summarizes the use of state variables for
module integration in a reconfigurable system.

II. DESIGN ISSUES AND ASSUMPTIONS

In order to design a general mechanism which can be used to inte-
grate control modules in a multiprocessor environment, some archi-
tectural knowledge of the target hardware is required. We assume an
open-architecture multiprocessor system, which contains multiple
general purpose processors (such as MC68030, Intel 80386, SPARC,
etc.), which we call Real-Time Processing Units (RTPUs), on a com-
mon bus (such as VMEbus, Multibus, Futurebus, etc.). Each proces-
sor has its own local memory, and some memory in the system is
shared by all processors.

Given an open-architecture target environment, the following is-
sues must be considered:

Processor transparency: In order for a software module to be re-
usable, it must be designed and written independent of the
RTPU on which it will finally execute, since neither the hard-
ware nor software configuration is known apriori.

Task synchronization: Sensors and actuators may be operating at
different rates, thereby requiring different tasks to have differ-
ent frequencies. In addition, system clocks on multiple proces-
sors may not be operating at the exact same rate, causing two
tasks with the same frequency to have skewing problems. The
module integration must not depend on task frequencies or
system clocks for synchronization.

Data integrity: When two modules communicate with each oth-
er, a complete set of data must be transferred. It is not accept-
able for part of a data set to be from the current cycle, while
the rest of the data set is from a previous cycle.

Predictability: In real-time systems, it is essential that the com-
munication between modules is predictable, so that worst-case
execution and blocking times can be bounded. These times are
required for analysis by most real-time scheduling algorithms.

Bus bandwidth: In an open-architecture system, a common bus is
shared by all RTPUs. The communication between modules
must be designed to minimize the bus traffic.

implementation efficiency: The design must lead to an efficient
implementation. Communication mechanisms which incur
large amounts of overhead are not suitable for the high fre-
quency tasks, and therefore cannot be used.

To address these issues, we propose a state variable table mecha-
nism which allows the integration and reconfiguration of reusable
modules in a multiprocessor, open-architecture system.
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Fig. 2; Structure of state variable table mechanism
for control module integration

111, PJESIGN OF DTATE VARIABLE LABLE MECHANISM

The structure of our state variable table mechanism is shown in
Fig. 2. It is based on using global shared memory for the exchange of
data between modules, thus providing communication with minimal
overhead. A global state variable table is stored in the shared memo-
ry. The variables in the global state variable table are a union of all the
input port and output port variables of the modules that may be con-
figured into the system. Tasks corresponding to each control module
cannot access this table directly. Rather, every task has its own local
copy of the table, called the local state variable table.

Only the variables used by the task are kept up-to-date in the local
table. No synchronization is needed to access this table, since only a
single task has access to it. At the beginning of every cycle of a task,
the variables which are input ports are transferred into the local table
from the global table. At the end of the task’s cycle, variables which
are output ports are copied from the local table into the global table.
This design ensures that data is always transferred as a complete set.

When using the global state variable table for inter-module com-
munication, the number of transfers per second? (Z ;) for module M
can be calculated as follows:

(ZS(xU) + ZS(yU) +A)

_ i=1 i=1
Z = T 1)

where #; is the number of input ports for M;, m; is the number of
output ports for M}, x;; is mput variable x; for IV/ Yij is output variable
y; for M S(x) is tﬂe transfer size of varlable x, T 1s the period of M!
andAis the overhead required for locking and reljeasmg the state vari-
able table during each cycle.

We assume that the entire global state variable has a single lock, It
is possible for each variable to have its own lock, in which case the
locking overhead increases to (m+n)A. The advantage of using a sin-
gle lock is described in Section .A..

The bus utilization B for k modules in a particular configuration, in
transfers per second, is then

B=Y 1z o))

2 We use “transfers per second” instead of CPU execution time or bus utilization time
as a base measure for the resource requirements of the communication mechanism, since
it is a hardware independent measurement.



Thus using our state variable table design, we can accurately deter-
mine the CPU and bus utilization required for the inter-module com-
munication within a configuration.

A configuration is legal if the following holds true:

k,m’. k,nj k,mj
( M yij=®)’\(( (O X;j)g( ) yij)) 3)
y=1,i=1 j=1i=1 =1,i=1

)

The first term represents the intersection of all output variables
from all modules. If two modules have the same outputs, then a join
connector is required. Modules with conflicting outputs can modify
their output port variables, such that they are two separate, intermedi-
ate variables. A join connector is a separate module which performs
some kind of combining operation, such as a weighted average. Its in-
put ports are the intermediate variables, while its single output port is
the output variable that was originally in conflict. The bandwidth re-
quired can then be calculated by treating the join connector as a regu-
lar module. Split connectors are not required in our design, since mul-
tiple tasks can specify the same input port, in which case data is
obtained from the same location within the global state variable table.
The second term in (3) states that for every input port, there must be a
module with a corresponding output port.

Using state variables for module integration is processor indepen-
dent. Whether multiple modules run on the same RTPU, or each mod-
ule runs on a separate RTPU, the maximum bus bandwidth required
for a particular configuration remains constant, as computed in (2). In
the next section we give more details on typical modules within a
reconfigurable sensor-based control system.

A. Control Module Library

The state variable table mechanism is a means of integrating con-
trol modules, which have been developed with a reusable and recon-
figurable interface. Once a module is developed, it can be placed into
a library, and incorporated into a user’s application as needed. A sam-
ple control module library is shown in Fig. 3. The classification of dif-
ferent module types is for convenience only. There is no difference in
the interfaces of say, a robot interface module and a digital controller
module. We expect that existing robot control libraries (e.g. [2][10]),
can be repackaged into reusable modules in order to use them in
reconfigurable systems.

The following variable notation is used:
0: joint position x: Cartesian position
0: joint velocity x: Cartesian velocity
©: joint acceleration X: Cartesian acceleration
T: joint torque f: Cartesian force/torque
u: control signal J: Jacobian
z: wild-card: match any variable

The following subscript notation is used:
d: desired (as input by user or path planner)
1: reference (computed value, commanded on each cycle)
m: measured (obtained from sensors on each cycle)
y: wild-card: match any subscript

Robot interface modules communicate directly with robotic hard-
ware. In general arobot is controlled by sending joint torques to an ap-
propriate input/output port, as represented by the torque-mode robot
interface module. The current joint position and joint velocity of the
robot can also be retrieved from the hardware interface. With some ro-
bots, direct communication with the robot actuator is not possible.
The robot provides its own controller, to which reference joint posi-
tions must be sent. The position-mode robot interface is a module for
this type of robot interface. Other actuators or computer controlled
machinery may also have similar interface modules. The frequency of
these modules is generally dependent on the robot hardware; some-

times it is fixed, other times it may be sct depending on the application
requirements. '

The sensor modules are similar to the robot interface modules, in
that they communicate with device hardware, such as force sensors,
tactile sensors, and vision subsystems. In the case of a force/torque
sensor, a 6-DOF forceltorque sensor module inputs raw strain gauge
values and converts them into an array of force and torque values, in
Newtons and Newton-meters 1\13spectively.3 For a visual servoing ap-
plication [18], much of the reading and preprocessing of images is
performed by specialized vision subsystems. These systems may gen-
erate some data, from which a new desired Cartesian position is de-
rived, as illustrated by the visual servoing interface module.

The teleoperation input modules are also sensor modules. They
have been classified separately in order to distinguish user input from
other sensory input. In our control module library the teleoperation
modules read from a 6 DOF wrackball, thus both modules are similar.
The difference is the type of preprocessing performed by each mod-
ule, allowing the trackball to be used either for generating velocities
(which can be integrated to obtain positions), or force, for when the
robot is in contact with the environment.

Trajectory generators are another way of getting desired forces or
positions into the control loop. The input may come from outside the
control loop, such as from the user (e.g. keyboard), from a predefined
trajectory file, or from a path-planning subsystem.

Differentiator and integrator modules perform time differential and
integrals respectively. For example, joint velocities may be obtained
by differentiating joint positions. Only the value of the current cycle
is supplied as input. Previous values are not required, as the modules
are designed with memory, and keep track of the positions and veloc-
ities of previous cycles. The current time is assumed to be known by
all modules.

Digital controller modules are generally the heart of any configura-
tion. In our sample library, we have trajectory interpolators, a PID
joint position controller, a resolved acceleration controller [11], an im-
pedance controller {6], and other supporting modules such as forward
and inverse kinematics, Jacobian operations [19], inverse dynamics
[8], and a damped least squares algorithm [29]. Given the proper input
and output port matching, various controller modules can be integrat-
ed to perform different types of control. Sometimes a particular con-
trol configuration will not need all of its inputs. Those inputs are often
set to zero. The zero module provides a constant value 0 to an input
stream. Theoretically this would be a single task which always copies
the constant variable to the global state variable table. However, in
practice, the global state variable table only has to be updated once,
after which time the module no longer has to execute, thus saving on
both RTPU and bus bandwidth. This practice is equivalent to setting
the frequency of task zero to infinity.

Many of the modules require initialization information. For exam-
ple, the PID controller module requires gains, and the forward kine-
matics and Jacobian module requires the robot configuration. These
values can also be passed via the global state variable table, and are
read only once from the table. However, for simplicity in our dia-
grams, we have not shown these initialization inputs.

Given a library of modules, several legal configurations may be
possible. Fig. 4 shows one possible configuration for a teleoperated
robot with a torque-mode interface. Each module is a separate task
and can execute on its own RTPU, or multiple modules may share the
same RTPU, without any code modification. The state variable table
mechanism allows the frequency of each task to be different, The se-
lection of frequencies will often be constrained by the available hard-

3 For consistency among modules, all input and output variables have units defined
by the systéme internationale (SI).
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ware. For example, the robot interface may require that a new torque
be supplied every 2 msec cycle time (500 Hz frequency), while the
trackball may only supply data every 33.3 msec (30 Hz frequency).
Digital control modules do not directly communicate with hardware,
and can execute at any frequency. Generally the frequency for the con-
trol modules will be a multiple of the robot interface frequency. When
using the state variable table for communication between the mod-
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Fig. 3: Sample Control Module Library

B. Reusable Modules and Reconfigurable Systems

The primary goal of the global state variable table mechanism is to
integrate reusable control modules in a reconfigurable, multiprocessor
system. The previous section gave examples of control modules, and
a sample configuration. In this section, we will give an example of
reconfiguring a system to use a different controller, without changing
the sensor and robot interface modules.

ules, any combination of frequencies among tasks will work. This al-

lows frequencies to be set as required by the application, as opposed

to being constrained by the communications protocol.
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Fig. 4: Example of module integration: Cartesian teleoperation

Fig. 5 shows two different visual servoing configurations demon-
strating the concept of reusable modules. Both configurations obtain
a new desired Cartesian position from a visual servoing subsystem,
and supply the robot with new reference joint positions. The configu-
ration in (a) uses standard inverse kinematics, while the configuration
in (b) uses a damped least squares algorithm to prevent the robot from
going through a singularity [29]. The visual servoing, forward kine-
matics and Jacobian, and position-mode robot interface modules are
the same in both configurations. Only the controller module is differ-
ent.

The change in configurations can occur either statically or dynam-
ically. In the static case, only the task modules required for a particular
configuration are created. In the dynamic case, the union of all task
modules required are created during initialization of the system. As-
suming we are starting up using configuration (a), then the inverse ki-
nematics task is turned on immediately after initialization, causing it
to run periodically, while the damped least squares and time integra-
tor tasks remain blocked, or off. At the instant that we want the dy-
namic change in controllers, we block the inverse kinematics task and
wrn on the damped least squares and time integrator tasks. On the
next cycle, the new tasks will automatically update their own local
state variable table, and execute a cycle of their loop, instead of the in-
verse kinematics task doing so. Assuming the on and off operations
are fairly low overhead (which they are in our implementations) the
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dynamic reconfiguration can be performed without any loss of cycles.
Note that for a configuration to properly execute, the set of modules
must be schedulable on the available RTPUs, as described in [24].

Note that open-ended outputs are fine (e.g. forward kinematics and
Jacobian module output port J in (a)) as the module simply generates
a value that is not used. These open-ended outputs generally result
when a module must perform intermediate calculations. The interme-
diate values can sometimes be used by other modules, and hence they
are made available as outputs. The outputs are normally saved in the
local state variable table, and copied to the global table at the end of
the cycle. To save on bus bandwidth, these unused outputs do not have
to be updated in the global state variable table, since they are never re-
quired as input by the other modules.

C. Combining Modules

The model of our control modules allows multiple modules to be
combined into a single module. This has two major benefits:

1. complex modules can be built out of smaller, simpler mod-
ules, some or all of which may already exist, and hence be
reused; and

2. the bus and processor utilization for a particular configura-
tion can be improved.

For maximum flexibility, every component is a separate module,
hence a separate task. This structure allows any component to execute
on any processor, and allows the maximum number of different mul-
tiprocessor configurations. However, the operating system overhead
of switching between these tasks can be eliminated if each module ex-
ecutes at the same frequency on the same processor. Multiple modules
then make up a single larger module, which can be defined to be a sin-
gle task.

The bus utilization and execution times for updating and reading
the global state variable table may also be reduced. If data from the
interconnecting ports of the modules forming the combined modules
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is not needed by any other module, the global state variable table does
not have to be updated. Since the modules are combined into a single
task, they have a single local state variable table. Communication be-
tween those tasks remains local, and thus reduces the bus bandwidth
required by the overall application.

The computed torque controller [13] is an example of a combined
module. It combines the PID joint position computation module with
the inverse dynamics module, as shown in Fig. 6. The resulting mod-
ule has the inputs of the PID joint position computation, and the out-
put of the inverse dynamic module. The intermediate variable 4 does
not have to be updated in the global state variable table. In addition,
the measured joint position and velocity is only copied into the local

‘state variable once, since by combining the two modules, both mod-

ules use the same local table. Note that combining modules is only de-
sirable if they can execute at the same frequency on the same RTPU
at all times, as a single module cannot be distributed among multiple
RTPUs.

IV. IMPLEMENTATION

We have implemented a state variable table mechanism (which we
call svar) and integrated it with the Chimera II Real-Time Operating
System [23]. Our target hardware architecture is a VMEbus-based
[17] single-board computers, with multiple MC68030 processor
boards. Functional and syntactic details of the svar mechanism can be
found in [25].

First, the global state variable table is created in shared memory. A
configuration file which contains the union of all possible state vari-
ables within the system is then read. Once the global state variable ta-
ble is created, any task can attach to it, at which time a block of local
memory is allocated and initialized for the task. Data for a specific
variable can then be transferred between the global and local tables.

In our implementation, we give the ability to transfer multiple vari-
ables by preprogramming the list of variables that should be trans-
ferred from the global table at the beginning of a task’s cycle, and to
the global table at the end of its cycle. A typical module task would
then have the following format:

call module initialization
preprogram list of input and output variables
begin loop
copy input variables from global table to
local table
execute one cycle of module
copy output variables from local table to
global table
pause until beginning of next cycle
end loop
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The preprogram and copy statements are provided by our svar im-
plementation. The pausing and looping are handled by the operating
system. Therefore, modules can be defined as subroutine components
with a standard interface, which are called at the appropriate time by
the above generic framework.

A. Locking Mechanism

So far we have assumed that tasks can transfer data as needed.
However, since the global state variable table must be accessed by
tasks on multiple RTPUs, appropriate synchronization is required to
ensure data integrity. A task which is updating the table must first lock
it, to ensure that no other task reads the data while it is changing. Two
locking possibilities exist:

1. keep-a single lock for the entire table
2. lock each variable separately

The main advantage of the single lock is that locking overhead is
minimized. A module with multiple input or output ports only has to
lock the table once before transferring all of its data. There appear to
be two main advantages of locking each variable separately: 1) multi-
ple tasks can read or write different parts of the table simultaneously,
and 2) ransfers of data for multiple variables by a low priority task
can be preempted by a higher priority task. Closer analysis, however,
shows that locking each variable separately does not have these ad-
vantages. First, because the bus is shared, only one of multiple tasks
holding a per-variable lock can access the table at any one time. Sec-
ond, we will show later that the overhead of locking the table, which
in effect is the cost of preemption, is often greater than the time for a
task to complete its transfer. A single lock for the entire table is thus
recommended.

Next, an appropriate locking mechanism must be selected. Simple
mechanisms like local semaphores and only locking the CPU cannot
be used, because they are only valid for single-processor applications.
Multiprocessor mechanisms available include spin-locks [15], mes-
sage passing, remote semaphores [23], and the multiprocessor priority
ceiling protocol [20].

The message passing, remote semaphores, and multiprocessor pri-
ority ceiling protocol all require significant overhead, which is typi-
cally an order of magnitude greater than the data transfer itself. For
example, the remote semaphores in Chimera Il take a minimum of
44 psec for the locking and unlocking. operations, and as much as
200 psec if the lock is not obtained on the first try and forces the task
to block [23]. A typical transfer, on the other hand, may consist of 6
joint positions and 6 joint velocities, for a total of 12 transfers. On a
typical VMEbus system, the raw data transfer (i.e. excluding all over-
head) takes approximately 16 psec. The message passing and the mul-
tiprocessor priority ceiling protocol would require significantly more
overhead than the remote semaphores. It is thus not reasonable to use
the higher level synchronization primitives for locking the state vari-
able table.

The simplest multiprocessor synchronization method is the spin-
lock, which uses an atomic rest-and-set (TAS) operation. The TAS in-
struction reads the current lock value from memory, then writes / into
that location. If the original value is 0, then the task acquires the lock,
otherwise the lock is not obtained, and the task must try again. The
read and write portions of the instruction are guaranteed to be atomic,
even among multiple processors. To release the lock, 0 is written to
the memory location. The number of bus transfers required to acquire
and release the spin-lock is A = 2r + 1, where r is the number of re-
tries needed to obtain the lock.

If a task does not get the lock on the first try, it must continually re-
try (or spin, hence the name spin-lock). If it retries as fast as possible,
then the task may use up bus cycles which can instead be used by the

task holding the lock to transfer the data. A small delay, which we call
the polling time, should be placed between each retry. The polling
time can be arbitrarily set, and usually some form of compromise is
chosen. A polling time too short results in too much bus bandwidth
being used for retry operations, while a polling time too large results
in waiting much longer for a lock than necessary, hence wasting valu-
able CPU cycles. In our system, the polling time is 25 [sec, which has
so far been satisfactory for all of our experiments.

Unfortunately using a simple locking mechanism like the spin-lock
does not guarantee a bounded execution time while waiting for or
holding the lock. In [15], several schemes are described which do of-
fer bounded execution time. However, each of these require some
form of hardware support that is not available. In particular, all meth-
ods require a round-robin bus arbitration policy. The VMEbus offers
round-robin bus arbitration for a maximum of 4 bus masters (every
RTPU is a bus master, and some special purpose processors and di-
rect-memory-access (DMA) devices may also be bus masters). More
than 4 bus masters causes some of the bus masters to be daisy-chained
priority driven. In some installations, the system controller only has
single-level arbitration, and no round-robin arbitration is possible.
Consequently, the bounded locking mechanisms break down. To
bound the waiting time for a spin-lock, we have implemented the
mechanism described below.

First, to ensure that a task is not swapped out while it holds a lock,
it will disable all interrupts on its own RTPU, thus allowing it to per-
form the transfer uninterrupted. Considering that the resolution of the
system clock is generally on the order of milliseconds, and with the
assumption that transfers are relatively short (i.e. less than a few tens
of microseconds), disabling preemption while the transfer is occurring
will have negligeable effect on most real-time scheduling algorithms.
Interruptions in using the bus may come from other RTPUs trying to
gain the lock. In the worst case, each other RTPU will perform one
TAS instruction during every polling cycle. The maximum number of
interruptions is thus controllable by setting an appropriate polling
time.

Without a bounded waiting time locking mechanism, it is not pos-
sible to guarantee that tasks will get the data they require on time, ev-
ery time. As an alternative, a time-out mechanism is used, so that if
the lock is not gained within a pre-specified time or number of retries,
then the transfer is not performed. The maximum waiting time for the
lock is then the time-out period, which is also equal to polling time *
max_number_of retries. For most-tasks in a control system, missing
an occasional cycle is not be critical. In such a case, the value from the
previous cycle still remains in the local table, and will be used during
the next cycle. When using the time-out mechanism, error handlers
should be installed to detect tasks that suffer successive time-out er-
rors. Discussion on handling these errors is beyond the scope of this
paper.

B. Performance

A summary of the performance of our svar implementation is
shown in Tables I and II, Measurements were taken from an Ironics
1V3230 single board computers {7], with a 25MHz MC68030 proces-
sor, on a VMEDbus, using a VMETRO 25 MHz VBT-321 VMEbus an-
alyzer {27]. The bus arbitration scheme of the Ironics IV3230 is set to
release-on-request. The global state variable table is stored within the
dual-ported memory of a second IV3230 RTPU.

As seen from the Table I, a significant overhead is incurred in
VMEbus transfers, even when using the simplest of synchronization
mechanisms. The time to obtain the global state variable table lock us-
ing TAS involves a subroutine call to an assembly language routine
which performs the MC68030 TAS instruction [16], and checking the
return value for a 1 or 0. Releasing the lock involves resetting it to 0.
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TABLE I: BREAKDOWN OF VMEBUS TRANSFER TIMES
AND COMMUNICATION OVERHEAD

Operation Execution Time (psec)
obtaining global state variable table lock using TAS 5
releasing global state variable table lock 2
locking CPU 8
releasing CPU lock 8
initial subroutine call overhead 4
Icopy() subroutine call overhead 7
total overhead for single variable read/write 34
additional overhead, per variable, for multivariable copy 5
raw data transfer over VMEDbus, 6 floats 9
raw data transfer over VMEbus, 32 floats 31
raw data transfer over VMEbus, 256 floats 237

Locking and unlocking the CPU is performed by trapping into kernel
mode, modifying the processor priority level, then returning to user
mode. The subroutine call overhead involves passing one pointer ar-
gument on the stack.

The Icopy() routine is used to perform a block transfer. It is an op-
timized form of the standard C routine bcopy(). It can only transfer
multiples of 4 bytes (the width of the VMEbus data paths). Blocks are
16 bytes (4 transfers) each. The time in Table I is the subroutine call
overhead, which includes passing three arguments on the stack. If the
transfer is not a multiple of the block size, then an additional 3 ytsec
overhead results for the incomplete block, but that time is incorporat-
ed into the raw data transfer time. The raw data transfer time is the
time for sending the specified amount of data. Note that each float is
exactly one transfer. The 9 psec transfer time for 6 floats includes the
3 usec overhead because the transfer is not a multiple of 16 bytes.

Our svar mechanism gives the ability to preprogram a set of vari-
ables to transfer on every cycle. Multiple variables are then trans-
ferred together as a single block, hence the lock is only acquired once
per cycle. The additional overhead per variable is time to update the
pointers between transfers of each individual variable.

Table II gives a summary of the times for various transfer between
the global and local state variable tables, using both the single-vari-

able and multivariable transfers. When using the single-variable trans-
fer, a subroutine call and variable locking is required for each variable.
Therefore for the case 6 * float{32], the routine is called six times, and
the transfer size each time is 32 floats. For the multivariable transfer,
the subroutine call and locking overhead is only incurred once for all
the variables. In the case of 6 * float{32], 192 floats are sent consecu-
tively. Note that the multivariable transfer requires a preprogram op-
eration, which is performed during initialization. It can take anywhere
from 25 psec to a few milliseconds, depending on the number of vari-
ables being programmed, and the size of the state variable table. The
overhead savings of using the multivariable transfer is greatest when
modules have a large number of variables with short transfer sizes.

In our experiments using this implementation, all modules use the
multivariable transfer. The small loss in performance for transferring
a single variable is negligeable compared to the gains of the multivari-
able transfer if more than one variable is transferred, and for the con-
sistency that all modules use the same transfer mode.

V. SUMMARY

In this paper we first presented a simplified port automaton model
for the definition of reusable and reconfigurable control tasks. Using
this model we developed a state variable table mechanism, based on
global shared memory, to integrate control modules in a multiproces-
sor open-architecture environment. Using the mechanism, control
modules can be reconfigured, both statically and dynamically. The
maximum bus bandwidth required for the interprocessor communica-
tion can be calculated exactly, based on the module definitions. The
mechanism allows control tasks of arbitrary frequencies to communi-
cate with each other without the need for any special provision. The
mechanism is also robust when clocks on multiprocessors suffer
skewing problems.

We showed examples of a control module library, a teleoperation
control module configuration, and a reconfigurable application. The
state variable table mechanism has been implemented as part of the
Chimera II Real-Time Operating System. Several implementation is-
sues were also considered, the most prominent being the locking
mechanism used to ensure proper control module synchronization and
data integrity. We chose to lock the entire state variable table with a
single lock, using a high-performance spin-lock with CPU locking.

TasLE II: SAMPLE TIMES FOR TRANSFERS BETWEEN GLOBAL AND LOCAL STATE VARIABLE TABLES

Single-Variable Transfers Multi-Variable (M-V) Transfers M-V Savings

Transfer Size time raw data overhead time raw data overhead

(psec) (%) (%) (psec) (%) (%) (usec) (%)
1 * float{6] 43 37 63 48 _ 33 67 -5 -12
1 * float[32] 65 68 42 72 56 44 -7 -11
1 * float[256] 264 90 10 273 87 12 -9 -3
2 * float[6] 86 37 63 64 42 58 22 26
2 * float[32] 130 68 42 100 63 37 30 23
2 * float[256] 528 90 10 505 93 7 23 4
6 * float[6] 258 37 63 120 52 44 138 53
6 * float[32] 390 68 42 250 77 23 140 36
6 * float[256] 1584 90 10 1480 96 4 104 9

Single-variable transfers are using svarRead() and svarWrite(). Multi-variable transfers use a program operation to predefine which variables to copy on each
cycle. The table lock is only obtained once for all variables. The multi-variable savings show the relative performance of using multi-variable transfers over single-
variable transfers. Raw data is the percentage of time spent copying data, while overhead is the communications overhead for subroutine calls, argument passing,

and locking the table.
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Detailed performance measurements are given, highlighting the over-
head versus raw data transfer execution times.

The multiprocessor control module integration using state vari-
ables has proven to be an extremely valuable method for building
reconfigurable systems. This method is being used at Carnegie Mellon
University with the Direct Drive Arm IT [8][28], the Reconfigurable
Modular Manipulator System II [21], the Troikabot System for Rapid
Assembly [9], and the Self-Mobile Space-Manipulator [4], and at the
Jet Propulsion Laboratory, California Institute of Technology, on a
Robotics Research 7-DOF redundant manipulator [26]. These sys-
tems all share the same software framework. In many cases, the sys-
tems also share the same software modules. The sensors and control
algorithms used for any particular experiment on any of these systems
can be reconfigured in a matter of seconds, and in some cases dynam-
ically.
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